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CONGRUENCE PROPERTIES OF COEFFICIENTS OF
MODULAR FORMS FOR Γ+

0 (5)

SoYoung Choi*

Abstract. We find congruence properties on the coefficients of
modular forms for Γ+

0 (5) generated by Γ0(5) and a Fricke involution(
0 −1
5 0

)
.

1. Introduction

The study of the arithmetic properties of modular forms with inte-
gers is an interesting branch in the theory of modular forms (see [3]).
Choie, Kohnen and Ono (see [1]) obtained congruence properties for
coefficients of modular forms for SL2(Z). In this paper we discover con-
gruence properties on the coefficients of modular forms for Γ+

0 (5) which

is generated Γ0(5) and a Fricke involution
(

0 −1
5 0

)
. Let k be an even

integer. Let Mk(Γ+
0 (5)) the vector space of modular forms for Γ+

0 (5) and
r := dimMk(Γ+

0 (5)). Indeed, we have the following.

(1) M2(Γ+
0 (5)) = {0}.

(2) dimMk(Γ+
0 (5))=(k−2)/4 if k ≡ 2 (mod 4) and dimMk(Γ+

0 (5))=k/4+
1 otherwise. (See Theorem 2.5.2 in [2]).

As usual, we letH be the complex upper half plane and q = e2πiz (z ∈ H)
and

Ek = 1− 2k

Bk

∑

n≥0

σk−1(n)qn
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be an Eisenstein series of weight k, where σk−1(n) is the sum of (k− 1)-
st powers of the positive divisors of n and Bk is Bernoulli number. For
instance,

E4(z) = 1+240q+2160q2 + · · · and E6(z) = 1−504q+−16632q2 + · · · .

We are ready to state our main theorem.

Theorem 1.1. Let k > 4r − 4 be an even positive integer such that
k ≡ 0 (mod 4). For any f =

∑
n≥0 af (n)qn ∈ Mk(Γ+

0 (5)) ∩ Z[[q]], we
have that for each positive integer b,

afE6(5
b) ≡ −af (0) (mod 5).

2. Proof of Theorem 1.1

For each positive even integer k > 2, let

E+
k (z) = Ek + 5k/2Ek(5z),

E2(z) = 1− 24
∑

n>0

σ1(n)qn, E+
2 (z) = E2 − 5E2(5z),

then E+
k (z) is a modular form for Γ+

0 (5) of weight k and E+
2 (z) is a

modular form for Γ0(5) (see [5, page 88]) whose the sign of the Fricke
involution is −1. Consequently (E+

2 (z))2 is a modular form for Γ+
0 (5) of

weight 4
Specially we have the following Fourier expansions:

E+
4 (z) = 26 + 240q + · · · , (E+

2 (z))2 = 16 + 192q + · · · .

Thus

∆+
5 (z) :=

13(E+
2 (z))2 − 8E+

4 (z)
1576

= q + · · ·
is a normalized cusp form for Γ+

0 (5) of weight 4. The below proposition
guarantees that ∆+

5 (z) has no zero on H.

Proposition 2.1. Let f be a modular form for Γ+
0 (5) of weight k,

which is not identically zero. We have
∑

p∈Γ+
0 (5)\H

epvp(f) + v∞(f) =
k

4
,

where 1/ep is the cardinality of Γ+
0 (5)p and vp(f) is the order of a mod-

ular form f at a point p.

Proof. See [4, Proposition 2.1].
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We define a Hauptmodul j+
5 (z) for Γ+

0 (5) which plays an important role
in this paper as follows

j+
5 (z) :=

E+
4 (z)

∆+
5 (z)

=
1
q

+ · · · .

For any f ∈ Mk(Γ+
0 (5)), we define

W (f) =
f

(∆+
5 )r−1

.

To prove Theorem 1.1 we need the following proposition.

Proposition 2.2. W is a vector space isomorphism from Mk(Γ+
0 (5))

onto the space R of polynomials in j+
5 of degree less than r.

Proof. For d = 0, 1, ..., r−1 the functions (j+
5 )d(∆+

5 )r−1 ∈ Mk(Γ+
0 (5)).

Since W ((j+
5 )d(∆+

5 )r−1) = (j+
5 )d, W carries the subspace Q of Mk(Γ+

0 (5))
generated by the modular forms (j+

5 )d(∆+
5 )r−1 isomorphically onto R.

Hence dimQ = r which implies that Q = Mk(Γ+
0 (5)).

We are ready to prove Theorem 1.1. We note that two functions

−1
2πi

dj+
5 (z)
dz

=
26
q

+ ...

and
E+

6 (z)
∆+

5 (z)
=

126
q

+ · · ·

are weakly holomorphic modular forms for Γ+
0 (5) of weight 2. We note

that M2(Γ+
0 (5)) = {0}. These imply that

−63
26πi

dj+
5 (z)
dz

=
E+

6 (z)
∆+

5 (z)
.

Moreover, we have that

jm dj+
5 (z)
dz

=
1

m + 1
d(j+

5 (z))m+1

dz
(m ∈ Z,m ≥ 0).

Since the constant term in the Fourier expansion of d(j+
5 (z))m+1

dz is zero,
by linearity it follows that

(j+
5 )5

b−r −63f

26πi(∆+
5 )r−1

dj+
5

dz
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has constant term zero. Thus we have that the constant term of

(j+
5 )5

b−r −63f

26πi(∆+
5 )r−1

dj+
5

dz
≡ fE6

∆+
5 (5bz)

≡ (
∑

n≥0

afE6(n))(q−5b
+ 1 + ...)

≡ · · ·+ (afE6(5
b) + afE6(0)) + · · · (mod 5)

is zero modulo 5 which means

afE6(5
b) ≡ −afE6(0) ≡ −af (0) (mod 5).
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